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Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system
evolution. We reportfirst results on ellipticflow of charged particles at midrapidity in Au1 Au col-
lisions at

p
sNN � 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion

Collider. The ellipticflow signal,y2, averaged over transverse momentum, reaches values of about6%
for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted
as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity
and transverse momentum dependence of ellipticflow are also presented.

DOI: 10.1103/PhysRevLett.86.402 PACS numbers: 25.75.Ld

The goal of the ultrarelativistic nuclear collision pro-
gram is the creation of a system of deconfined quarks and
gluons [1]. If this system is created, its evolution should
be governed by the physics of deconfined matter. Elliptic
flow, which is sensitive to the early evolution of the sys-
tem, is the anisotropic emission of particles“ in” or “out” of

the reaction plane defined for noncentral collisions by the
beam direction (z axis) and the impact parameter direction
(x axis). The wordflow is used to describe collective be-
havior but does not necessarily imply a hydrodynamic in-
terpretation. Ellipticflow is usually characterized in terms
of particle momenta byy2 � ��p2

x 2 p2
y ���p2

x 1 p2
y��,
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the second harmonic Fourier coefficient in the azimuthal
distribution of particles with respect to the reaction plane
[2,3]. Elliptic flow has its origin in the spatial anisotropy of
the system when it is created in a noncentral collision, and
in particle rescatterings in the evolving system which con-
vert the spatial anisotropy to momentum anisotropy. The
spatial anisotropy in general decreases with system expan-
sion, thus quenching this effect and making ellipticflow
particularly sensitive to the early stages of the system evo-
lution [4]. Being dependent on rescattering, ellipticflow
is sensitive to the degree of thermalization of the system
[5,6] at this early time. Hydrodynamic models, which are
based on the assumption of complete local thermalization,
predict the strongest signals [6–9].

Elliptic flow in ultrarelativistic nuclear collisions was
first discussed in Ref. [7] and has been studied intensively
in recent years at the Alternating Gradient Synchrotron
(AGS) [10,11] and the CERN Super Proton Synchrotron
(SPS) [12–14] energies. These studies have found that
elliptic flow at high energies is“ in plane,” y2 . 0, as ex-
pected from most models, and the pion ellipticflow for
relatively peripheral collisions increases with beam energy
[15] from about 2% at the top AGS energy [10] to about
3.5% at the SPS [13]. From transport cascade models for
the full Relativistic Heavy Ion Collider (RHIC) energy,
a peak ellipticflow value of 1.5% is predicted by ultra-
relativistic quantum molecular dynamics [16] calculations
and 2.5% by relativistic quantum molecular dynamics v2.4
[17] calculations [18]. Hydrodynamic models predicty2
as high as 10% [6,8]. Details of they2 dependence on
beam energy and centrality are thought to be sensitive to
the phase transition between confined and deconfined mat-
ter [5,6,8,9,19] (see also [15], and references therein).

We report here thefirst results on ellipticflow in
Au 1 Au collisions at RHIC at

p
sNN � 130 GeV. The

Solenoidal Tracker at RHIC (STAR) [20] consists of
several detector subsystems in a large solenoidal magnet.
For first year data taking, the setup consists of the Time
Projection Chamber (TPC) which covers the pseudora-
pidity rangejhj , 1.8 for collisions in the center of the
TPC, and has complete azimuthal coverage, which is
desirable for the study of azimuthal correlations. In the
first year, the TPC is operated with a 0.25 Tfield, allowing
tracking of particles withpt . 75 MeV�c. Two zero
degree calorimeters [21] which measure fragmentation
neutrons are used in coincidence for the trigger. The TPC
is surrounded by a scintillator barrel which measures the
charged particle multiplicity, and is used in studies of the
trigger performance and vertex reconstruction efficiency.

The relative multiplicity distribution for events with a re-
constructed primary vertex is shown in Fig. 1. An analysis
of the trigger performance and vertex reconstruction effi-
ciency, together with comparisons with Hijing [22], shows
that the events in Fig. 1 are hadronic Au1 Au interac-
tions corresponding to about 80% to 90% of the geometric
cross section, the losses being due to vertex reconstruction
inefficiency for low multiplicity events. This inefficiency

FIG. 1. The primary track multiplicity distribution as a func-
tion of the number of tracks normalized by the maximum ob-
served number of tracks. The eight centrality regions used in
this analysis are shown. The integral under the curve is 1.0 and
the cumulative fraction corresponding to the lower edge of each
centrality bin is also indicated in percent.

is not included in the normalization of Fig. 1. The multi-
plicity is the number of primary tracks which pass within
3 cm of the vertex and havejhj , 0.75. The distribution
shown is not corrected for tracking efficiency; it is used in
this analysis only to estimate centralities.

For this analysis, 22 k events were selected with a pri-
mary vertex position within 75 cm longitudinally of the
TPC center and within 1 cm radially of the beam line.
Tracks were selected with0.1 , pt # 2.0 GeV�c in or-
der to have a tracking efficiency constant to within610%.
They also passed within 1 cm of the primary vertex, had
at least 15 space points, andjhj , 1.3. For the determi-
nation of the event plane we requiredjhj , 1.0. Also, the
ratio of the number of space points to the expected maxi-
mum number of space points for that particular track was
required to be greater than 0.52, largely suppressing split
tracks from being counted twice. However, the analysis
results are not sensitive to these cuts.

The analysis method [2,3] involves the calculation of the
event plane angle, which is an experimental estimator of
the real reaction plane angle. The second harmonic event
plane angles,C2, are calculated for two subevents, which
are groups of independent particles from the same event.
In order to see whether these planes are correlated, the
mean cosine of the difference in their event plane angles
is calculated. Although the STAR detector has good
azimuthal symmetry, small acceptance effects in the
calculation of the event plane angle were removed by the
methods of shifting or weighting [3]. This correction, by
either method, is negligible for the second harmonic.

The subevents have been chosen in three different ways:
(1) Assigning particles with pseudorapidity0.05 , h ,
1 to one subevent and particles with21 , h , 20.05
to the other subevent. The“gap” between the two
regions ensures that short range correlations, such as
Bose-Einstein correlations or Coulombfinal state inter-
actions, contribute negligibly to the observed correlation.
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FIG. 2. Correlation between the event plane angles determined
for two independent subevents. The upper set is for the second
harmonic (n � 2) and the lower set for thefirst harmonic (n �
1). The points are positioned at the values of meannch�nmax
corresponding to each of the centrality bins in Fig. 1. The
horizontal bars show the widths of the bins.

(2) Dividing all particles randomly into two subevents.
(3) Assigning positive particles to one subevent and
negative particles to the other. Figure 2 shows the results
for correlation of the event planes of subevents assigned
by the pseudorapidity method. The two other methods
give similar results. Nonflow effects (not correlated with
the reaction plane) would contribute differently for these
different subevent choices. The peaked shape of the cen-
trality dependence of�cos�2�Ca 2 Cb��� is characteristic
of anisotropicflow whereas all known nonflow effects
would be monotonic or almost constant for this quantity.

Most commonly discussed nonflow sources of azimuthal
correlations are (1) momentum conservation, which can
affect directedflow when each subevent is not symmet-
ric about midrapidity and does not affect ellipticflow
measurements. (2) Coulomb and Bose-Einstein correla-
tions [23], which are eliminated by the construction of the
subevents in Fig. 2. (3) Resonance decay [24], whose ef-
fect on the subevent correlation would be independent of
centrality. (4) Jets, when calculated using Hijing [22] for
the cuts used in the current analysis, give a�cos�2�Ca 2
Cb��� of 0.05 for central collisions and lower values for
other centralities. This would propagate to a decrease in
y2, but within the systematic errors quoted below. Also,
if jets or resonances contribute to second harmonic corre-
lations they would contribute to thefirst harmonic corre-
lation in a comparable amount [25]. Thefirst harmonic
correlation, which is shown in Fig. 2, and the higher har-
monics, are significantly weaker than the second harmonic
correlation. This sets an upper limit for the contribution of
all nonflow effects to the second harmonic correlation and
is the basis of the estimate given below of the systematic
errors of ellipticflow.

The analysis method involves correlation of the azi-
muthal angle,f, of each particle with an event plane
angle,C, and then averaging over all events. In this paper

we have used three particle correlation methods: (1) Cor-
relating the particles from one hemisphere with the event
plane of the subevent in the other hemisphere. (2) Corre-
lating each particle with the event plane of all theother
particles. (3) Correlating particles of one charge sign with
the event plane of the opposite charge sign. The observed
elliptic flow comes from the second harmonic Fourier coef-
ficient of the particle azimuthal distribution with respect to
the event plane, which is simply�cos�2�f 2 C2���. The
elliptic flow relative to the real reaction plane,CR , the
plane defined by the impact parameter and the beam, can
be evaluated by dividing the observed signal by the reso-
lution, �cos�2�C 2 CR���, of the event plane. The reso-
lutions calculated from the correlation of subevent planes
were somewhat different for the different subevent selec-
tions, but the resultanty2 values were the same within
statistical errors. The resolutions for the full events reach
0.7 for the centrality at the peak in Fig. 2, while in NA49
[12,13] at the SPS they only reached 0.4. A resolution
of the event plane angle of 0.7 is sufficiently close to
the ideal value of 1.0, to correlate other quantities, such
as two particle correlation measurements (Hanbury-Brown
and Twiss) with the event plane. Since we do not measure
the correlation with thefirst harmonic plane, we cannot
determine the sign ofy2.

Our analysis procedures have been tested with simu-
lated data [26] to which a known amount offlow has
been added. The simulated data werefiltered by aGEANT

model of STAR and reconstructed in a way similar to that
used for the data. For 2% and 10% ellipticflow added to
the simulations, theflow extracted was�2.0 6 0.1�% and
�9.7 6 0.2�%, respectively.

Figure 3 showsy2 as a function of centrality of the col-
lision. Thisfigure was made with the subevents chosen as
in Fig. 2, but the same results within errors were obtained
with the other correlation methods. Restricting the primary

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

max/nchn

2v

FIG. 3. Elliptic flow (solid points) as a function of centrality
defined asnch�nmax. The open rectangles show a range of values
expected fory2 in the hydrodynamic limit, scaled frome, the
initial space eccentricity of the overlap region. The lower edges
correspond toe multiplied by 0.19 and the upper edges toe
multiplied by 0.25.
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vertex z position to reduce TPC acceptance edge effects
also made no difference. From the results of the study
of nonflow contributions by different subevent selections
and the maximum magnitudes of thefirst and higher-order
harmonics, we estimate a systematic error fory2 of about
0.007, with somewhat smaller uncertainty for the midcen-
tralities where the resolution of the event plane is high.
The systematic errors are not included in thefigures.

In the hydrodynamic limit, ellipticflow is approximately
proportional to the initial space anisotropy,e, which is
calculated in Ref. [27]. The transformation to the multi-
plicity axis in Fig. 3 was done using a Hijing [22] simu-
lation assuming 10% vertex-finding inefficiency for low
multiplicity events. In comparing theflow results toe, no
unusual structure is evident which could be attributed to
the crossing of a phase transition while varying central-
ity [4,19]. Thee values in Fig. 3 are scaled to show the
range of hydrodynamic predictions [6,8] fory2�e from
0.19 to 0.25. The data values for the lower multiplicities
could indicate incomplete thermalization during the early
time when ellipticflow is generated [5,6]. For the more
central collisions, comparison of the data with hydrody-
namic calculations suggests that early-time thermalization
may be complete. They2 values peak at more peripheral
collisions than RQMD predictions [18], but in qualitative
agreement with hydrodynamic models [7].

The differential anisotropicflow is a function ofh and
pt. For the integrated results presented here, ally val-
ues shouldfirst be calculated as a function ofh and pt ,
and theny2�h, pt� should be averaged over either or both
variables using the double differential cross sections as
weights. Since we do not yet know the cross sections,
we have averaged using the observed yields. Figure 4
showsy2 as a function ofpt for a minimum bias trig-
ger. Theh dependence (not shown), which is averaged
over pt from 0.1 to2.0 GeV�c, is constant at a value of
�4.5 6 0.5�% for jhj & 1.3. We have assumed that the
efficiency (yield/cross section) is constant in thept range
where the yield is large. This is borne out by studies of the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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FIG. 4. Elliptic flow as a function of transverse momentum for
minimum bias events.

effects of different track quality cuts on the observedpt

spectra. For thept dependence the data are not very sen-
sitive to the assumption of constant efficiency as a func-
tion of h becausey2 appears to be independent ofh in
the range used,jhj , 1.3. Mathematically they2 value at
pt � 0, as well as itsfirst derivative, must be zero, but it is
interesting thaty2 appears to rise almost linearly withpt

starting from relatively low values ofpt . This is consis-
tent with a stronger in-plane hydrodynamic expansion of
the system than the average radial expansion. Note that the
results shown in Fig. 3 were obtained by taking the aver-
age over bothh andpt , weighted by the yield. Although
Fig. 4 is for approximately minimum bias data [28] the
general shapes are the same for data selected on centrality,
except that the slopes of thept curves depend on central-
ity. Figure 4 was made using pseudorapidity subevents,
although the same results within errors were obtained us-
ing the other two methods.

We conclude that ellipticflow at RHIC rises up to about
6% for peripheral collisions, a value which is more than
50% larger than at the SPS [13], indicating stronger early-
time thermalization at this RHIC energy. Ellipticflow ap-
pears to be independent of pseudorapidity in the region
jhj & 1.3. Its pt dependence is almost linear in the re-
gion 0.1 , pt , 2 GeV�c. Comparing with estimates
[18] based on transport cascade models, wefind that ellip-
tic flow is underpredicted by RQMD by a factor of more
than 2. Hydrodynamic calculations [6,8] for RHIC ener-
gies overpredict ellipticflow by about 20%–50% for the
more peripheral collisions. This is just the reverse of the
situation at the SPS where RQMD gave a reasonable de-
scription of the data and hydrodynamic calculations were
more than a factor of 2 too high [13]. Also in contrast
to lower collision energies, the observed shape of the cen-
trality dependence of the ellipticflow is similar to hydro-
dynamic calculations and thus consistent with significant
thermalization. The values for ellipticflow compared to
hydrodynamic models indicate that early-time thermaliza-
tion is somewhat incomplete for peripheral collisions but
perhaps complete for the more central collisions.
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